PID-Controlled Hypothermia Blanket

Sarah Slack, Eric Yang, Max Weil, Brandon Nelsen

Introduction & Clinical Need

- Hypothermia kills twice as many as heat in United States [1]
 - Mild = 32-35°C
 - \circ Moderate = 28-32°C
 - \circ Severe = below 28°C
- Body temperature set point = $37 \pm 0.5^{\circ}$ C
- Rewarming should be started ASAP, before emergency room arrival
- Active external rewarming (AER) approaches are used for all severities
- PID blanket to monitor and control 2°C/hour rewarming rate [2]

Existing Blankets

- Passive external rewarming (PER) blankets rely on remaining body heat [3]
 - Not helpful in moderate to severe cases
- AER techniques often employed only in hospital
 - Require equipment and can block other treatment [3]
- Used during time to emergency room
 - Longer trips in cold or rural areas would benefit from AER
- Have to recheck state of patient every 15 minutes
 - PID-controlled AER continuously checks state of patient

Typical PER blanket [4].

Design Constraints - Ideal

- Desired material properties:
 - Heat conductible to transfer heat throughout entire blanket
 - Heat reflective surface to reduce heat loss caused by thermal radiation
 - Flexible, able to be wrapped airtight around a patient to prevent heat loss caused by evaporation and convection
- Storage concerns:
 - Blanket, PID, and power supply (battery) should be able to be compacted into most first aid kits

Design Constraints - Ideal

- Usability
 - User friendly interface so anyone can set up device and insert desired temperature to perform first aid
 - Reusable aside from replacing power supply
- Safety and other guidelines
 - Electrical components insulated to prevent micro and macroshock
 - All first aid kits require clear labeling in all materials stored within

Specifications

- Desired weight and dimensions [5]
 - Size: minimum 34" x 48" to fit all body sizes
 - Weight: ideally less than 1.5 lbs
- Other performance aspects
 - 2°C/hour warming rate
 - Oscillation amplitude no greater than 0.5°C from set temperature (37°C)
 - Low steady state error (within 0.5°C) so set temperature accurately reached [6]
 - Accurately responds to patient's current temperature

Current Prototype

Proposed Design

LilyPad temperature sensor [7].

PID Tuning

Кр	Ki	Kd	Behavior	Tset (K)	Ti (K)	Tf (K)	Time (s)	Rate (K/min)
0.1	0.001	1	Steady increase, rate too quick	297	276.7	285	66	7.55
0.05	0.0005	0.01	2K/min at first, then decays	310	298.7	306.6	293	1.61
0.05	0.003	0.007	Increase Ki reduce steady state error, see if overshoot okay with lower Kd	310	300.1	311.5	n/a	n/a
0.01875	0.00103125	0.00375	Intermediate Ki, lowered all equally	310	298.6	310.9	406	1.98

Conclusions and Future Work

- Conclusions
 - Demonstrated proof of concept for hypothermia blanket
 - Gained understanding in PID controllers and LabView development
- Future work
 - Implement PID controller with corresponding specifications on blanket
 - Integrate body temperature sensor into device
 - Compact and mobilize device with battery as power supply

Acknowledgements

- BioEn 337 Teaching Team
 - Dr. Taylor
 - Vaish, Priscilla
- Dr. Neils

References

- 1. Berko, J., Ingram D. D., & Saha, S. (2014). Deaths attributed to heat, cold, and other weather events in the United States, 2006-2010. *Natl Health Stat Report* (76):1-15.
- 2. Zafren, K. & Mechem, C. (2018). Accidental Hypothermia in Adults. *Up to Date*. Retrieved from https://www.uptodate.com/contents/accidental-hypothermia-in-adults#H12\
- 3. Rewarming Methods in Hypothermia. (2019). *Family Practice Notebook*. Retrieved from https://fpnotebook.com/ER/Environ/RwrmngMthdsInHypthrm.htm
- 4. Emergency Hypothermia Blanket. (n.d.). *H&H Medical*. Retrieved from https://buyhandh.com/products/emergency-hypothermia-blanket
- 5. Ready Heat II. (n.d.) Rescue Essentials. Retrieved from https://www.rescue-essentials.com/ready-heat-ii/
- 6. Karakitsos, D. & Karabinis, A. (2008). Hypothermia therapy after traumatic brain injury in children. *N. Engl. J. Med.* 359 (11): 1179–80.
- 7. LilyPad Temperature Sensor. (n.d.). Sparkfun. Retrieved from https://www.sparkfun.com/products/8777